
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In-situ heat loss measurements of parabolic trough receivers based on transient infrared thermography

Abstract The design lifetime of parabolic trough receivers is at least 25 years. However, depending on the specific operating conditions, this expected lifetime may be shortened. A periodic inspection of receivers mounted in a solar field is thus recommended. Several field methods with distinct depth of information and field throughput exist to estimate receiver thermal performance. This paper gives an overview of these field methods and presents the application of a transient infrared thermography method, which combines dynamic temperature measurements with a numerical heat transfer model in order to derive specific receiver heat losses and separate internal heat loss mechanisms. This method has been previously investigated under laboratory test conditions and is here applied under field test conditions for in-situ thermal measurements on mounted receivers. The transient thermography method allows a correct estimation of specific heat losses within a precision range below ±10% for all tested receivers under field test conditions. Relevant separation of heat loss mechanisms could be derived for evacuated PTRs with solar selective absorber coating, while partially biased diagnoses could be observed for partially or non-evacuated PTRs with highly emissive absorber coatings. Active thermography is considered as a relevant tool for receiver field inspection, in combination with a complementary field screening measurement technique.
- German Aerospace Center Germany
in-situ heat loss measurement, transient infrared thermography, parabolic trough receiver, inverse heat transfer problem
in-situ heat loss measurement, transient infrared thermography, parabolic trough receiver, inverse heat transfer problem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
