Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Full environmental life cycle cost analysis of concentrating solar power technology: Contribution of externalities to overall energy costs

Authors: B. Corona; E. Cerrajero; D. López; G. San Miguel;

Full environmental life cycle cost analysis of concentrating solar power technology: Contribution of externalities to overall energy costs

Abstract

Abstract The aim of this work is to investigate the use of Full Environmental Life Cycle Costing (FeLCC) methodology to evaluate the economic performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) plant operating in hybrid mode with different natural gas inputs (between 0% and 30%). The analysis is based on a plant located in Southern Spain and includes current financial incentives for the promotion of renewable energies. The analysis also incorporates an estimation of external costs associated with atmospheric emissions on six categories: Human Health, Loss of Biodiversity, Local and Global Damage to Crops, Damage to Materials and Climate Change. In a scenario where the project is funded through equity, the life cycle internal costs of the plant operating with solar energy only represent 82.8 €/MW h, while revenues from electricity sales amount to 85.7 €/MW h, resulting in a net present value of 2.95 €/MW h. Internal costs are attributable primarily to the purchase of materials and equipment incurred mainly during the Extraction and Manufacturing life cycle phase. In this scenario, external costs (calculated using CASES damage costs methodology) represent less than 2.6% of all the internal costs considered. Hybridizing CSP with natural gas allows higher overall power outputs due to extended operating hours. However, this strategy involves higher internal costs, resulting in a significant reduction in the revenues (per unit of power generated) and in the net present value of the project. Thus, the existing regulatory system in Spain makes CSP hybridization with natural gas economically unattractive. In addition, the use of natural gas in CSP installations results in a rapid increase in environmental damage as evidenced by higher external costs. For instance, external unit costs of CSP with 30% natural gas were up to 8.6 times higher than in solar-only operation, due primarily to increased greenhouse gas emissions. When the analysis is extended to consider financing through bank loan under common market conditions, the same project shows economic viability for percentages of natural gas hybridization up to 14%. However, solar-only operation remains as the best option.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
bronze