
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> For further information contact us at helpdesk@openaire.eu
15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films
Authors:
Ojo, A.A.;
Dharmadasa, I;
Ojo, A.A.
Ojo, A.A. in OpenAIRE
Dharmadasa, I
Dharmadasa, I in OpenAIRE
Abstract
Making use of previously designed and experimentally tested results of graded bandgap devices, and the comprehensive electrodeposition of semiconducting materials knowledge, a three layer n-n-p device structure was fabricated and tested for their electronic properties and solar cell performance. Glass/FTO/n-CdS/n-CdTe/p-CdTe/Au devices were fabricated and studied as a first step towards development\ud of graded bandgap devices using electroplated materials. Efficiencies up to 15.3% were observed for lab-scale small devices.
Country
United Kingdom
Related Organizations
- Sheffield Hallam University United Kingdom
- Sheffield Hallam University United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).71 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
71
Top 10%
Top 10%
Top 1%
Green
bronze
Beta
Fields of Science
Fields of Science
Related to Research communities