
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Towards nanostructured perovskite solar cells with enhanced efficiency: Coupled optical and electrical modeling

Abstract Third generation photovoltaic technologies based on perovskites have demonstrated an exceptional progress in solar energy conversion since their first use in 2009. Herein, we investigated the effect of using light trapping nanostructures on the absorption, carrier collection, and overall efficiency of perovskite (CH 3 NH 3 PbI 3 ) solar cells using three dimensional (3D) finite element method (FEM) technique. A combined optical-electrical model was constructed to full characterize the proposed devices. Upon the use of nanotubular architecture, the optimized active area absorption enhanced by 6% and the total generation rate increased by 7% compared to the planar architecture. Under one sunlight illumination (AM1.5G), with normal incident angle, the solar cells containing nanostructured light trapping architecture showed a drastic enhancement in the short circuit current ( J sc ), the quantum efficiency (EQE), and the overall efficiency compared to the planar film-based solar cell. The obtained enhancements would open a new route for integrating light trapping nanostructures in CH 3 NH 3 PbI 3 perovskite-based solar cells for better efficiency.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).58 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
