Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of turbulence characteristics in the atmospheric surface layer on the peak wind loads on heliostats in stow position

Authors: Emes, M.; Arjomandi, M.; Ghanadi, F.; Kelso, R.;

Effect of turbulence characteristics in the atmospheric surface layer on the peak wind loads on heliostats in stow position

Abstract

Abstract This study investigates the dependence of peak wind load coefficients on a heliostat in stow position on turbulence characteristics in the atmospheric surface layer, such that the design wind loads, and thus the size and cost of heliostats, can be further optimised. Wind tunnel experiments were carried out to measure wind loads and pressure distributions on a heliostat in stow position exposed to gusty wind conditions in a simulated part-depth atmospheric boundary layer (ABL). Force measurements on different-sized heliostat mirrors at a range of heights found that both peak lift and hinge moment coefficients, which are at least 10 times their mean coefficients, could be optimised by stowing the heliostat at a height equal to or less than half that of the mirror facet chord length. Peak lift and hinge moment coefficients increased linearly and approximately doubled in magnitude as the turbulence intensity increased from 10% to 13% and as the ratio of integral length scale to mirror chord length L u x / c increased from 5 to 10, compared to a 25% increase with a 40% increase in freestream Reynolds number. Pressure distributions on the stowed heliostat showed the presence of a high-pressure region near the leading edge of the heliostat mirror that corresponds to the peak power spectra of the fluctuating pressures at low frequencies of around 2.4 Hz. These high pressures caused by the break-up of large vortices at the leading edge are most likely responsible for the peak hinge moment coefficients and the resonance-induced deflections and stresses that can lead to structural failure during high-wind events.

Country
Australia
Related Organizations
Keywords

stow position, wind load, 621, Heliostat, atmospheric surface layer, 551

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
hybrid