Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sizing of a standalone photovoltaic water pumping system using hybrid multi-criteria decision making methods

Authors: Tawfeeq Enad Abdulabbas; Dhiaa Halboot Muhsen; Tamer Khatib;

Sizing of a standalone photovoltaic water pumping system using hybrid multi-criteria decision making methods

Abstract

Abstract Photovoltaic water pumping system (PVPS) is considered one of the most important and promising application of solar energy in remote and rural areas. The random nature of solar energy is one of the main obstacles that encounter the designer to design an effective PVPS. Thus, an optimal and effective sizing approach is essential to ensure satisfactory performance. In this paper, a technique for order performance by similarity to ideal solution (TOPSIS) method integrated with analytic hierarchy process (AHP) method is proposed to optimally size PVPS based on techno-economic aspects. The loss of load probability (LLP) and excess water volume are considered as technical criteria, whereas the life cycle cost (LCC) is represented as an economic criteria to size the system. The hybrid AHP-TOPSIS sorts the PVPS configurations from the best to worst based on predefined weights for each criteria. The optimal configuration is found 5 PV modules and 4 PV strings are connected in series and parallel, respectively with 79 m3 as a maximum capacity of storage tank. The performance of system is tested based on the proposed optimal configuration over a year using hourly meteorological data. The results show that the proposed system offers high reliability throughout the year with LLP, LCC, and deficit water volume around 0.0004, 10524.9 USD, and 4.4629 m3, respectively.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%