
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
High efficiency graphene/MoS 2 /Si Schottky barrier solar cells using layer-controlled MoS 2 films

Abstract The isolation of two-dimensional (2D) materials and the possibility to assemblage as a vertical heterostructure have significantly promoted the development of ultrathin and flexible devices. Here, we demonstrate the fabrication of high efficiency graphene/MoS2/Si Schottky barrier solar cells with Molybdenum disulfide (MoS2) interlayers. MoS2 monolayers were prepared by sulfurizing pre-annealed molybdenum foil, which allows not only to precisely control the layer number, but also the nondestructive transference onto arbitrary substrates. The inserted MoS2 layers function as hole transport layer to facilitate the separation of electron-hole pairs as well as electron blocking layer to suppress the recombination at graphene/silicon interfaces. By optimizing the thickness of MoS2 layers, a high photovoltaic conversion efficiency of 15.8% was achieved in graphene/MoS2/Si solar cells. This study provides a novel approach for the synthesis of large-area MoS2 monolayers and their potential application for ultrathin and low-cost photovoltaic devices.
- Tianjin University of Technology China (People's Republic of)
- Tianjin University of Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).77 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
