Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation of large photovoltaic arrays

Authors: Abdin, Z; Webb, CJ; Gray, E MacA;

Simulation of large photovoltaic arrays

Abstract

Abstract Large photovoltaic arrays are becoming common as the world moves to replace fossil-fuelled electricity generators. As the array size and project cost increase, it becomes increasingly important to know accurately what the array’s performance will be before it is built. Large arrays inevitably contain modules with a spread of performance characteristics such as short-circuit current and open-circuit voltage, and suffer from temperature differences between modules. In this first study of these problems, a model has been developed that accurately predicts the behaviour of a photovoltaic array subject to variability between modules and inhomogeneity of cell temperature across the array. The model was applied to a real rooftop array consisting of 912 modules (298 kW nominal peak power). Based on measured string currents, the predicted average string temperature was compared the temperature measured by a radiometric survey using a drone-mounted IR camera and matched very well. The five-parameter model of cell I - V characteristics was fitted to manufacturer’s data, with highest weighting given to the region around the maximum-power point (MPP) where a real array should operate via active MPP tracking. The model was used to explore separately the effects of a spread in module characteristics arising in the manufacturing process and of temperature inhomogeneity across the array. The current in each module of a string was constrained to be the same, and the voltage of every parallel-connected string was also constrained to be the same. These constraints lead to greater power loss than is predicted based on an average module at an average temperature. Compared to a hypothetical array assembled from identical average modules at the same average temperature, variability caused a loss of power of about 2%, depending on the detailed form of the distribution function chosen to represent the spread of characteristics in the manufacturer’s tolerance band. As a rule of thumb, de-rating the maximum power to the lower end of the manufacturer’s tolerance band is recommended to account for module variability during the design phase. The effect of temperature inhomogeneity is more serious, because temperature affects V oc strongly, causing parallel-connected strings to be pulled away from their ideal operating points to obey the constraint of equal voltage. A modest 10 °C temperature gradient across the studied array was predicted to cause about a 4% loss of power at the MPP. Much higher real temperature differences could be expected in summer and were observed. The study confirmed that temperature inhomogeneity poses a serious design problem for large arrays, requiring careful thermal design to achieve not only acceptably low average array temperature, but also the least possible temperature spread.

Country
Australia
Related Organizations
Keywords

sensors and digital hardware not elsewhere classified, Built environment and design, Engineering, Electrical engineering not elsewhere classified, Electronics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Top 10%