Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A direct current-voltage measurement method for smart photovoltaic modules with submodule level power optimizers

Authors: Qi Gao; Yating Zhang; Youlin Yu; Zhengxin Liu;

A direct current-voltage measurement method for smart photovoltaic modules with submodule level power optimizers

Abstract

Abstract Mismatch between photovoltaic (PV) devices connected in series, caused by degradation or partial shading, may result in the significant power loss of a PV system. Therefore, smart PV (SPV) modules, integrated with power-optimization converters at the submodule level, have been used to overcome this problem. Due to the complex circuit topology of the integrated converters, the current-voltage (I-V) characteristics of most SPV modules cannot be tested directly using the routine method. This study aims to develop an I-V measurement procedure for SPV modules in the laboratory. The characteristic of the SPV module was investigated through theoretical and experimental analysis. The noise generated from the optimizer circuit was considered as the major hindrance in the I-V measurement for SPV modules, which was tested and then analyzed using Fourier analysis. Then, a filter corresponding to the noise characteristics was applied in the measurements to eliminate the noise. The measured result corresponded with the theoretical analysis; furthermore, the power linearity with irradiance and the field test verified the reasonableness of our method. The proposed method is applicable in the laboratory measurement of SPV modules within a few hundred milliseconds, which may be applied in relevant power sorting and measurements in production line.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%