Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Unitus DSpace
Preprint . 2018
Data sources: Unitus DSpace
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Smart integration of photovoltaic production, heat pump and thermal energy storage in residential applications

Authors: Vesselin Krassimirov Krastev; Giacomo Falcucci; Giacomo Falcucci; Andrea Luigi Facci; Stefano Ubertini;

Smart integration of photovoltaic production, heat pump and thermal energy storage in residential applications

Abstract

Abstract The optimal design of distributed generation systems is of foremost importance to reduce fossil fuel consumption and mitigate the environmental impact of human activities in urban areas. Moreover, an efficient and integrated control strategy is needed for each of the components of a distributed generation plant, in order to reach the expected economic and environmental performances. In this paper, the transition from natural gas to electricity-based heating is evaluated for residential applications, considering the interplay between photovoltaic electricity produced on site and the thermal energy storage, to grant the optimal management of heating devices. The energy demand of an apartment building, under different climatic conditions, is taken as a reference and four power plant solutions are assessed in terms of energy cost and pollution reduction potential, compared to a baseline plant configuration. The performance of each power plant is analyzed assuming an optimized control strategy, which is determined through a graph-based methodology that was previously developed and validated by the authors. Outcomes from our study show that, if heat pumps are used instead of natural gas boilers, energy costs are reduced up to 41%, while CO 2 emissions are reduced up to 73%, depending on the climatic conditions. Our results provide a sound basis for considering the larger penetration of photovoltaic plants as an effective solution towards cleaner and more efficient heating technologies for civil applications. The simultaneous utilization of heat pumps (as substitutes of boilers) and photovoltaic panels yields a positive synergy that nullifies the local pollution, drastically cuts the CO 2 emission, and guarantees the economical sustainability of the investment in renewable energy sources without subsidiary mechanisms.

Country
Italy
Keywords

Heat pump, Optimization, 690, Photovoltaic heating; Heat pump; Thermal storage; Optimization; GHG, Energy, Settore ING-IND/08 - MACCHINE A FLUIDO, Photovoltaic heating, Thermal energy storage, Thermal storage, GHG, Photovoltaic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 1%
Top 10%
Top 10%
Green
bronze