Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Collective effect of hybrid Au-Ag nanoparticles and organic-inorganic cathode interfacial layers for high performance polymer solar cell

Authors: Parameswar Krishnan Iyer; Ashish Singh; Anamika Dey;

Collective effect of hybrid Au-Ag nanoparticles and organic-inorganic cathode interfacial layers for high performance polymer solar cell

Abstract

Abstract The cooperative effect of hybrid Au-Ag nanoparticles and organic-inorganic cathode interfacial layers to advance the power conversion efficiency (PCE) of regio regular (rr) P3HT:PCBM based polymer solar cells (PSCs) are systematically demonstrated. In this work initially, two types of plasmonic nanoparticles (NPs), namely, citrate stabilized gold (AuNPs) and silver (AgNPs) were separately synthesized and then physically blend together with three different volume ratio [AuNPs + AgNPs (25:75), AuNPs + AgNPs (50:50) and AuNPs + AgNPs (75:25)]. These three blended NP solutions were then mixed together in the PEDOT:PSS (20 v/v %) hole extraction layer (HEL) to form three new NPs doped HEL and their effect on the rr-P3HT:PCBM based PSCs were systematically analyzed. For dual organic-inorganic cathode interfacial layers, two organic hole blocking materials, BPhen and BCP were used for enhanced charge collection in combination with LiF:Al as conventional cathode electrode. The collective effect of hybrid NPs with the dual cathode interfacial layers was examined with two varying active polymer blends, rr-P3HT:PC61BM and rr-P3HT:PC71BM. It has been found that the PCE increases considerably for both the active blend systems, with PEDOT:PSS + [AuNPs:AgNPs (25:75)] + BCP:LiF:Al as the modified cathode electrode. This is due to suitable electronic energy level matching of BCP:LiF:Al and active blend with the excellent surface plasmon property of the AuNPs:AgNPs (25:75) in the UV–Visible region compared to AuNPs:AgNPs (50:50) and AuNPs:AgNPs (75:25). Devices having configuration PEDOT:PSS + [AuNPs:AgNPs (25:75)] as HEL, rr-P3HT:PC71BM as active blend and BCP:LiF:Al provided PCE, ɳmax = 5.71% with Jsc = 16.44 mA/cm2, Voc = 0.58 V, FF = 60% and device with rr-P3HT:PC61BM as active blend layer was showing as PCE, ɳmax = 5.31% with Jsc = 14.77 mA/cm2, Voc = 0.58 V and FF = 62% with the same PEDOT:PSS + [AuNPs:AgNPs (25:75)] layer and BCP:LiF:Al. These results conclusively described a very simple technique in which the cooperative effect of plasmonic hybrid metals nanoparticles and dual cathode interfacial layers outstandingly enrich the PCE and in general the complete nature of rr-P3HT:PCBM based PSCs.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
bronze