Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mixed-steam annealing treatment for perovskite films to improve solar cells performance

Authors: Shao Jin; Qiyao Guo; Jihuai Wu; Dan Luo; Yuezhu Zhao; Leqing Fan; Yunfang Huang; +4 Authors

Mixed-steam annealing treatment for perovskite films to improve solar cells performance

Abstract

Abstract To improve the photovoltaic performance of the perovskite solar cells, it is necessary to reduce the density of surface defect for perovskite film with smooth surface. In this paper, we demonstrate a DMSO/CB mixed vapor annealing process to fabricate high-performance planar perovskite solar cells. The mixed vapor annealing treatment can significantly enhance the crystallization of perovskite film, leading to less crystal surface defects, effective charge-separation and the electron transport rate at the perovskite interface. Finally, the efficiency and reproducibility of the cells has been greatly improved. The power conversion efficiency (PCE) improved from 16.6% to 18.4% under AM 1.5G 100 mW·cm−2 irradiation. We anticipate that the mixed vapor annealing treatment will become a promising crystallization method for the fabrication of high performance PSCs in the future commercialization.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Related to Research communities
Energy Research