Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy
Article . 2019 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced performance of CH3NH3PbI3-based perovskite solar cells by tuning the electrical and structural properties of mesoporous TiO2 layer via Al and Mg doping

Authors: Atsushi Wakamiya; Chee Ming Lim; Hideki Nakajima; Alwani Imanah Rafieh; Alwani Imanah Rafieh; Piyasiri Ekanayake;

Enhanced performance of CH3NH3PbI3-based perovskite solar cells by tuning the electrical and structural properties of mesoporous TiO2 layer via Al and Mg doping

Abstract

Abstract In this work, we investigate how Al and Mg doped mesoporous TiO2 layers can improve the power conversion efficiency (PCE) of perovskite solar cells (PSCs) with respect to undoped mesoporous TiO2. The PSC configuration used in this study consists of mesoscopic structure with CH3NH3PbI3 as the perovskite absorber. A PSC with optimized mol% of Al and Mg doped mesoporous TiO2 layers has been shown to achieve up to 22% higher efficiency than that of pure TiO2. While the Mg doping only enhances the open-circuit voltage (VOC), the Al doping effectively enhances the VOC, the short-circuit current density (JSC), and the fill factor (FF). The occupancy of the doped metals in the lattice is confirmed by XRD, EDX, and XPS. The Mg doping increases the band gap of TiO2 while the Al doping decreases it. The wide band gap in Mg doped TiO2 reduces the electron and hole recombination rate, thus increasing the JSC and VOC. By Al doping, deep trap sites in the TiO2 are eliminated, and this effectively reduces the recombination losses and in turn, increases the JSC. The enhanced electron-hole generation rate attributed to the decrease in the band gap of Al doped TiO2 also increases the JSC. In addition, there is an enhancement on the electron mobility by the presence of Al metal and this gives an increase in the FF. The results have demonstrated the possibility of improving the PCE of PSCs by fine tuning the band gap of mesoporous TiO2.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
hybrid
Related to Research communities
Energy Research