Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARCHIVO DIGITAL PARA...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solar energy system for heating and domestic hot water supply by means of a heat pump coupled to a photovoltaic ventilated façade

Authors: Martín Escudero, Koldobika; Salazar Herrán, Erik; Campos Celador, Álvaro; Diarce Belloso, Gonzalo; Gómez Arriaran, Ignacio Santiago;

Solar energy system for heating and domestic hot water supply by means of a heat pump coupled to a photovoltaic ventilated façade

Abstract

Abstract To spread the nearly Zero Energy Building (NZEB) concept, there is a need for the combined integration of energy saving measures and energy supply systems that minimize the non-renewable primary energy consumption. This paper aims to analyse the capabilities of a novel system composed of a photovoltaic (PV) double skin facade (PV-DSF) coupled to an air source heat pump system (ASHP). The main goal of this system is to provide heating and domestic hot water (DHW) using renewable energy. A quasi-steady mathematical model has been developed to assess the energy capabilities of the proposed system. The thermal and electric generation of the system can be estimated with the hourly outdoor temperature and solar radiation as input data. Calculations have been carried out on an existing block of flats in Bilbao (Spain) to estimate the energy viability of the proposed system. It has been proved that almost all the thermal energy demand can be supplied with the ASHP system, which improves its Seasonal Performance Factor (SPF) in 14.8%. Regarding electric energy, the PV-DSF panels can supply approximately 70% of the electricity consumed by the ASHP system and the fans of the PV-DSF. In addition, if more PV modules are installed on the roof, the demand can be covered with a surplus for other uses. Economically, comparing it with a conventional natural gas boiler facility, the investment cost is amortized in 6.4 years.

Country
Spain
Keywords

building energy performance, nearly zero energy buildings, air source heat pump, photovoltaic ventilated façade, forced convection

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
Green