Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Correlation between electrical resistivity and optical transmittance of Mg- and Ga-doped ZnO window layers in NIR-IR region and its effect on current density of kesterite solar cells

Authors: Jin Hyeok Kim; Jihun Kim; Junsung Jang; Dong-Seon Lee; Jong Ha Moon; Hyeong-Jin Kim;

Correlation between electrical resistivity and optical transmittance of Mg- and Ga-doped ZnO window layers in NIR-IR region and its effect on current density of kesterite solar cells

Abstract

Abstract The doping of Mg and Ga into ZnO is a method for obtaining excellent optical and electrical properties for a window layer in an inorganic solar cell. Because a tradeoff exists between the electrical and optical properties in the window layer, balancing them is important for enhancing the performance of the solar cells. From this viewpoint, the thickness change of the window layer affects the transmittance and the conductivity. In particular, it affects the transmittance in the NIR-IR region significantly, which can enhance the current collection but lead to poor conductivity when the transmittance of the window layer is increased. We examine the thickness effect of MGZO films for CZTSSe solar cells in order to determine the optimal conversion efficiency. The enhanced transmittance in the NIR-IR region with a thin MGZO layer contributed to a high current density, although the electrical resistivity was relatively high. An enhanced conversion efficiency of 7.54% was eventually recorded for an optimal thickness of the MGZO layer with an improved current density over 7 mA/cm2.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Related to Research communities
Energy Research