
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optical characterization of two-stage non-imaging solar concentrator for active daylighting system

Abstract A novel prototype of two-stage non-imaging solar concentrator (2S-NISC) for active daylighting in a building has been constructed and presented in our previous paper. In this work, the optical characteristics of the 2S-NISC have been explored to analyze the overall performance embracing maximum solar concentration ratio, percentage of energy in uniform illumination area, spillage loss, tolerance angle towards tracking error etc. using analytical formulas assisted by ray-tracing software based on designed parameters including the focal distance, f/D ratio and size of the receiver. In our simulation, we consider the case of 2S-NISC consisted of eighty primary facet mirrors of 5 cm × 5 cm each, twenty secondary facet mirrors of 8 cm × 8 cm each, and plastic optical fibers as a daylight transmitter. When focal distance is changed from 50 to 100 cm, the maximum solar concentration ratio increases from 65.1 to 70.1 suns; whilst the percentage of energy in the uniformly illuminated area shows the overall trend of decreasing when focal distance is changed from 50 to 100 cm except at focal distances 60 cm and 100 cm due to the slope error. Finally, the total tolerance angle of the 2S-NISC that allows at least 95% of energy to be collected with respect to perfect tracking is determined as 0.54˚.
- Universiti Tunku Abdul Rahman Malaysia
- Universiti Tunku Abdul Rahman Malaysia
- Universiti Tunku Abdul Rahman Sungai Long Campus Malaysia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
