Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optical characterization of two-stage non-imaging solar concentrator for active daylighting system

Authors: Nneka Obianuju Onubogu; Kok-Keong Chong; Boon-Han Lim; Tiong-Keat Yew; Chee-Woon Wong;

Optical characterization of two-stage non-imaging solar concentrator for active daylighting system

Abstract

Abstract A novel prototype of two-stage non-imaging solar concentrator (2S-NISC) for active daylighting in a building has been constructed and presented in our previous paper. In this work, the optical characteristics of the 2S-NISC have been explored to analyze the overall performance embracing maximum solar concentration ratio, percentage of energy in uniform illumination area, spillage loss, tolerance angle towards tracking error etc. using analytical formulas assisted by ray-tracing software based on designed parameters including the focal distance, f/D ratio and size of the receiver. In our simulation, we consider the case of 2S-NISC consisted of eighty primary facet mirrors of 5 cm × 5 cm each, twenty secondary facet mirrors of 8 cm × 8 cm each, and plastic optical fibers as a daylight transmitter. When focal distance is changed from 50 to 100 cm, the maximum solar concentration ratio increases from 65.1 to 70.1 suns; whilst the percentage of energy in the uniformly illuminated area shows the overall trend of decreasing when focal distance is changed from 50 to 100 cm except at focal distances 60 cm and 100 cm due to the slope error. Finally, the total tolerance angle of the 2S-NISC that allows at least 95% of energy to be collected with respect to perfect tracking is determined as 0.54˚.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%