Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Real time single TiO2 nanoparticle monitoring of the photodegradation of methylene blue

Authors: Thalyta Tavares Martins; Renato V. Gonçalves; Fernando Ely; Rene A. Nome; Sérgio Ricardo Muniz; Leonardo L. Santos; Guilherme H. Oliveira; +2 Authors

Real time single TiO2 nanoparticle monitoring of the photodegradation of methylene blue

Abstract

Abstract We report a proof-of-concept micro-spectroscopy, stochastic dynamics, and optical trapping study of a well-known reaction for methylene blue photodegradation catalyzed by titanium dioxide aggregates and nanotubes. Photocatalysis is performed under a high concentration of reactants and catalyst loading to characterize the fundamental chemical kinetics and dynamics aspects of this reaction under in operando conditions. We also report the effect of substrate concentration, light intensity, and substrate/catalyst ratio on the kinetic profiles. Optical imaging is used to quantify how spatial and concentration variations affect the reaction kinetics. To study the dynamics of individual nanoparticle catalysts under in operando conditions, we use optical trapping to characterize the stochastic dynamics of single TiO2 nanotubes. Overall, the results presented here indicate that the setup can be used to monitor photocatalytic degradation of methylene blue with simultaneous measurements of images and spectra while also monitoring the catalyst Brownian motion at the single-particle level.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Related to Research communities
Energy Research