Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ledinegg instability analysis on direct vapor generation inside solar collectors

Authors: Yani Lu; Shuai Deng; Xianhua Nie; Li Zhao; Dahai Wang; Dongpeng Zhao; Lijin Chen;

Ledinegg instability analysis on direct vapor generation inside solar collectors

Abstract

Abstract Compared with direct steam generation (DSG), direct vapor generation (DVG) system based on organic working fluid has better application potential in low and medium temperature distributed system. However, there is a lack of understanding of the two-phase flow instability that commonly occurs in DVG systems and can cause fatal damage to the system. In this paper, Ledinegg instability is considered as a common flow instability, and its occurrence characteristics and avoidance strategies are presented. First, a theoretical model was established to study Ledinegg instability of organic working fluid. Then, the effects of heat flux q, inlet subcooling Tc, length-to-diameter ratio L/D and fluid properties are analyzed. Particularly, a characteristic parameter RL representing the possibility of Ledinegg instability is proposed for the first time in performance evaluation of Ledinegg instability. The results show that as L/D decreases from 200 to 100, RL reduces from 0.88 to 0.25. As q increases from 10 kW/m2 to 30 kW/m2, RL increases from 0.54 to 1.03. When Tc is less than 3 °C, RL approaches 0 and Ledinegg instability disappears. With the increase of surface tension σ and the latent heat of vaporization r, the decreases of vapor-liquid density ratio ρsv/ρsl and the decreases of vapor-liquid viscosity ratio μsv/μsl, RL increases. The physical equation describing RL of Ledinegg instability is helpful to guide DVG system to reduce or avoid Ledinegg instability in design and operation.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%