Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A2-D-A1-D-A2-type small molecule acceptors incorporated with electron-deficient core for non-fullerene organic solar cells

Authors: Min Zhang; Min Zeng; Huajie Chen; Lanyan Li; Bin Zhao; Songting Tan;

A2-D-A1-D-A2-type small molecule acceptors incorporated with electron-deficient core for non-fullerene organic solar cells

Abstract

Abstract Two A2-D-A1-D-A2-type small molecule acceptors (SMAs), DFB-dIDT and BT-dIDT with 2,5-difluorobenzene (DFB) or benzothiadiazole (BT) as electron-withdrawing core (A1) and a derivative of indanone as A2 units, were prepared for applications in organic solar cells (OSCs). The results indicate that BT unit is more beneficial to forming multiple noncovalent conformational locks of N⋯S and N⋯H between BT and IDT unit than DFB in the core, so BT-dIDT showed better molecular coplanarity, higher-lying HOMO energy level, more red-shifted spectrum, superior molar absorption coefficient (1.60 × 105 M−1 cm−1 at 696 nm), more complementary absorption spectrum with PBDB-T and better photovoltaic performance than DFB-dIDT. As a result, the BT-dIDT-based OSCs blending with PBDB-T exhibited higher power conversion efficiency (PCE) value of 10.52% with higher Jsc of 18.59 mA cm−2 than that of the DFB-dIDT-based devices (PCE of 6.71% with Jsc of 15.58 mA cm−2). These results demonstrate that the A2-D-A1-D-A2-type SMAs incorporated with a suitable electron-deficient core are promising candidates for high performance OSCs.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
Related to Research communities
Energy Research