
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Organic tandem solar cells with 18.6% efficiency

Abstract Tandem organic photovoltaic (TOPV) cell is one of the technologies to harvest more solar power by staking two or more OPV devices on top of each other. Recently, the highest power conversion efficiency (PCE) ever achieved was 17.3%. Herein, this paper simulates the response of 676 different TOPV devices that consists front and back OPV cells. For this purpose, this paper uses the best 26 single-cell OPV devices to form the TOPV front and back cells combinations. The results show that there are some new TOPVs that can exceed 17.3% efficiency limit for TOPV. Also, in this work thickness optimization was performed for these new TOPV devices with an objective of efficiency maximization. As a result, using PBDTS-TDZ: ITIC in the front cells and PTB7-Th: O6T-4F:PC71BM in the back cell gives 18.6% efficiency. Likewise, the TOPV of PBDB-T-2F:TfIF-4FIC in the front cell with PTB7-Th:O6T-4F:PC71BM in the back cell gives 18.06% efficiency.
- Texas A&M University – Kingsville United States
- Council of Scientific and Industrial Research India
- The University of Texas System United States
- National Physical Laboratory United Kingdom
- Council of Scientific and Industrial Research India
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).82 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
