Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SolarNet: A sky image-based deep convolutional neural network for intra-hour solar forecasting

Authors: Cong Feng; Jie Zhang;

SolarNet: A sky image-based deep convolutional neural network for intra-hour solar forecasting

Abstract

Abstract The exponential growth of solar energy poses challenges to power systems, mostly due to its uncertain and variable characteristics. Hence, solar forecasting, such as very short-term solar forecasting (VSTSF), has been widely adopted to assist power system operations. The VSTSF takes inputs from various sources, among which sky image-based VSTSF is not yet well-studied compared to its counterparts. In this paper, a deep convolutional neural network (CNN) model, called the SolarNet, is developed to forecast the operational 1-h-ahead global horizontal irradiance (GHI) by only using sky images without numerical measurements and extra feature engineering. The SolarNet has a set of models that generate fixed-step GHI in parallel. Each model is composed of 20 convolutional, max-pooling, and fully-connected layers, which learns latent patterns between sky images and GHI in an end-to-end manner. Numerical results based on six years data show that the developed SolarNet outperforms the benchmarking persistence of cloudiness model and machine learning models with an 8.85% normalized root mean square error and a 25.14% forecasting skill score. The SolarNet shows superiority under various weather conditions.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 1%
Top 10%
Top 1%