Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Real-time spectral radiance estimation of hemispherical clear skies with machine learned regression models

Authors: Joseph Del Rocco; Paul D. Bourke; Charles B. Patterson; Joseph T. Kider;

Real-time spectral radiance estimation of hemispherical clear skies with machine learned regression models

Abstract

Abstract Whole sky spectral radiance distribution measurements are difficult and expensive to obtain, yet important for real-time applications of radiative transfer, building performance, physically based rendering, and photovoltaic panel alignment. This work presents a validated machine learning approach to predicting spectral radiance distributions (350–1780 nm) across the entire hemispherical sky, using regression models trained on high dynamic range (HDR) imagery and spectroradiometer measurements. First, we present and evaluate measured, engineered, and computed machine learning features used to train regression models. Next, we perform experiments comparing regular and HDR imagery, sky sample color models, and spectral resolution. Finally, we present a tool that reconstructs a spectral radiance distribution for every single point of a hemispherical clear sky image given only a photograph of the sky and its capture timestamp. We recommend this tool for building performance and spectral rendering pipelines. The spectral radiance of 81 sample points per test sky is estimated to within 7.5% RMSD overall at 1 nm resolution. Spectral radiance distributions are validated against libRadtran and spectroradiometer measurements. Our entire sky dataset and processing software is open source and freely available on our project website.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%