
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of condenser heat transfer on energy and exergy performance of active single slope solar still under hot climate conditions

Abstract This study experimentally investigates the performance of solar still coupled with a parabolic trough solar collector (PTSC) at different cooling rates based on energy, exergy, exergoeconomic, and enviroeconomic standpoints. Different solar still systems are considered; conventional solar still (CSS), solar still with heat sink condenser (MSS) and coupled with PTSC (MSS + PTSC), MSS having an umbrella and coupled with PTSC (MSS + PTSC + U), MSS with PTSC and condenser forced air cooling (MSS + PTSC + FA), and MSS + PTSC with condenser forced water cooling (MSS + PTSC + FW). Experiments are conducted under hot climate conditions of Sohag city, Egypt. Results indicated that the freshwater yield of all studied systems in ascending order is as follow; CSS + PTSC, MSS + PTSC + U, MSS + PTSC, MSS + PTSC + FA, and MSS + PTSC + FW in summer with value of 7.74, 8.02, 8.68, 9.11, and 9.45 kg/m2, respectively. The maximum exergy efficiency of 1.34% in summer is achieved in case of MSS + PTSC + FW system. The economic analysis shows that distilled water cost is minimum for MSS + PTSC + FW (~0.02 $/L), while it is maximum for MSS + PTSC + U (~0.022 $/L). It can be concluded that high freshwater production and less distilled water cost are making the enhanced solar desalination system feasible and competitive. Minimum exergy efficiency occurs in case of CSS + PTC with a value of 1.197% and MSS has higher average daily exergy efficiency. MSS + PTSC achieves the best performance-based exergoeconomic approach. MSS + PTSC + FW is by far the best system in cutting down CO2 emissions.
- Assiut University Egypt
- Banha University Egypt
- Egypt-Japan University of Science and Technology Egypt
- Banha University Egypt
- Assiut University Egypt
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).68 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
