Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal assisted blade coating methylammonium lead iodide films with non-toxic solvent precursors for efficient perovskite solar cells and sub-module

Authors: Kun-Mu Lee; Chia-Hsin Lai; Wei-Cheng Chu; Shun-Hsiang Chan; Vembu Suryanarayanan;

Thermal assisted blade coating methylammonium lead iodide films with non-toxic solvent precursors for efficient perovskite solar cells and sub-module

Abstract

Abstract Atmospheric thermal assisted blade coating (TABC) method, which is quick film crystallization and easier fabrication than the commonly used spin-coating process, to prepare a high quality CH3NH3PbI3 perovskite film is investigated in this work. Selection of the perovskite precursor solvents and controlling the ratio of the mixed solvent as well as substrate temperature for perovskite film formation are important factors in this TABC process. Based on the results obtained in this work, substrate temperature is the key factor for managing the perovskite film phase transition which influences the film roughness and crystallinity. Furthermore, the high-quality perovskite films are prepared by perovskite precursors with mixture of solvents containing GBL/DMSO at the ratio from 1/9 to 5/5. By using the optimum substrate temperature of 130 °C and the GBL/DMSO solvent ratio of 1/9 (G01D09) for the preparation of small area n-i-p and p-i-n PSCs as well as the p-i-n type perovskite sub-module, the power conversion efficiencies of 17.55%, 16.90% and 13.03%, respectively, are acquired under the illumination of 100 mW/cm2 (AM 1.5G).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Related to Research communities
Energy Research