Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development, testing and evaluation of energy savings potentials of photovoltachromic windows in office buildings. A perspective study for Australian climates

Authors: Alessandro Cannavale; Mattheos Santamouris; Francesco Fiorito; Francesco Fiorito;

Development, testing and evaluation of energy savings potentials of photovoltachromic windows in office buildings. A perspective study for Australian climates

Abstract

Abstract PhotoVoltaChromic (PVC) cells are among the emerging smart windows technologies with an interesting potential of building integration. PVC technology combines ElectroChromic materials with Dye Sensitized Solar cells in order to have a self-powered adaptive transparent film. The main advantage of this technology is to have an automatic control – potentially manually overridden – of colouration process, depending on levels of solar irradiance. Moreover, a PVC window can operate, at the same time, as a photovoltaic cell, producing energy exceeding the amount required for the colouring process. In the current study, for the first time, the full potential of PVC windows in office buildings is assessed. For this analysis, a PVC cell with a Visible Light Transmittance (VLT) variable between 16.9% and 31.5% has been selected. Australia has been considered as reference location, due to the presence, in its territory, of different climatic regions, ranging from tropical/subtropical climates to the temperate ones. The results show a strong dependence of potential energy savings on Window-to-Wall Ratio (WWR) and solar irradiance on windows. In cooling dominated climates, the adoption of PVC windows has been demonstrated to be always beneficial, even with very low WWR and/or non-optimal exposures, achieving overall energy savings of up to 20%. In heating dominated climates, adoption of PVC windows should be carefully considered, as it is highly beneficial when large glazed surfaces are present. In this case annual total energy savings up to the 32% can be predicted in comparison with buildings equipped with standard clear windows.

Country
Italy
Keywords

Adaptive facades; Energy efficiency; Photovoltachromic; Smart Windows

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%