
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A fast and accurate generalized analytical approach for PV arrays modeling under partial shading conditions

handle: 1959.3/457320
Abstract This paper proposes a generalized analytical approach to model the photovoltaic (PV) arrays under partial shading conditions (PSC). The proposed method is simple: it requires only the standard test condition (STC) parameters of the PV modules and the irradiance level imposed on each module. By using this information, the P-V and I-V curves of shaded PV arrays are obtained by simple steps. Firstly, the current-voltage (I-V) curves for all assembled submodules receiving the same level of irradiance are generated using the two-diode model. The parameters of the latter are computed using a fast parameter extraction method. Secondly, the I-V curve of each shaded string is computed using the computed I-V curves of its submodules. In the last step, the resulted I-V curve of the array is obtained by summation of all I-V strings curves. The proposed method is simple, fast, and can be coded in any development platform. Besides, the prediction accuracy is enhanced by incorporating the real effect of bypass and blocking diodes in the model. Furthermore, the proposed method could be generalized for any number of series/parallel connections in a shaded PV array. The method can be useful to generate critical shading patterns for maximum power point tracking (MPPT) algorithms evaluation. It can also be used as a tool to obtain instant shading patterns in PV array simulators.
- Universiti Teknologi MARA Malaysia
- University of Southampton United Kingdom
- University of Southampton Malaysia Malaysia
- University of Malaya Malaysia
- University of Southampton Malaysia Malaysia
T Technology (General), TK Electrical engineering. Electronics Nuclear engineering
T Technology (General), TK Electrical engineering. Electronics Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
