Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of monohalogenated terminal units of non-fullerene acceptors on molecular aggregation and photovoltaic performance

Authors: Min Zhang; Min Zeng; Linglong Ye; Songting Tan; Bin Zhao; Hwa Sook Ryu; Han Young Woo; +1 Authors

Effects of monohalogenated terminal units of non-fullerene acceptors on molecular aggregation and photovoltaic performance

Abstract

Abstract Three small molecule acceptors (SMAs), named ZF, ZC and ZB, have been designed and synthesized for organic solar cells (OSCs) by introducing single F, Cl and Br atom on each terminal unit, respectively. The effects of different halogen substituent on molecular aggregation, photophysical and photovoltaic performance have been systematically studied. Owing to its strong electronegativity of halogens, all the acceptors with monohalogenated terminal units possess red-shifted absorption spectra and deeper frontier energy levels compared to the corresponding acceptor without halogen substituents reported in the literature. Among the SMAs, ZB with brominated terminal units was found to show the higher molar absorption coefficient (2.31 × 105 M−1 cm−1), more orderly face-on π-π stacking, higher electron mobility and more favorable morphology when blended with PM6. As a result, the PM6:ZB OSCs yielded a high power conversion efficiency (PCE) of up to 15.23% with a high short-circuit current density (Jsc) of 26.38 mA cm−2, while the corresponding ZF- and ZC-based devices showed the relatively inferior PCEs of 13.36% and 14.71%, respectively. These results demonstrated that the modulation of electron-withdrawing halogen substituents on terminal group provides a promising strategy to design and synthesize efficient SMAs for fabricating high-performance OSCs.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Related to Research communities
Energy Research