Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Graphite foam infiltration with mixed chloride salts as PCM for high-temperature latent heat storage applications

Authors: Hao Lan; Sreya Dutta; Nasser Vahedi; Sudhakar Neti; Carlos E. Romero; Alparslan Oztekin; Michael Nappa; +1 Authors

Graphite foam infiltration with mixed chloride salts as PCM for high-temperature latent heat storage applications

Abstract

Abstract An improved hybrid vacuum and pressure-assisted infiltration technique was developed for the infiltration of phase change materials (PCM) into the graphite foam matrix. A single chamber with no moving part infiltration setup was designed and fabricated. Pelletized PCM was introduced to provide enough porosity for air removal using vacuum pumps with no need for transfer PCM after melting and infiltration. Simple design, the use of stainless steel, and the corrosion resistance feature of PCM provides a very cost-effective design and easily controllable process. Mixed alkali and alkaline chloride salts as PCM were infiltrated into the high porosity graphite foam to enhance the thermal conductivity of latent heat storage medium. Chloride based PCM with proven corrosion-resistant features, high energy storage density that enables storage and release of energy at nearly constant temperatures close to the melting temperature of 355 °C are used in this study, as an example. The composites of infiltrated graphite foam and chloride salt PCMs were studied using SEM, EDS microstructural analyses to determine the effectiveness of the infiltration process. An infiltration efficiency greater than 90% of the available porosity was achieved. The thermal conductivity of the infiltrated samples was analyzed using a laser Nano-flash thermal conductivity device. The thermal conductivity of the foam/PCM composite was shown to be larger by a factor greater than 40 times of pure chloride PCM (1–2 W/m-K). Low-cost infiltration with proven efficacy and repeatability of infiltrated PCM could be a breakthrough for 3rd generation of CSP plant applications with supercritical CO2 power cycles.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%