Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A two-phase closed thermosyphon operated with nanofluids for solar energy collectors: Thermodynamic modeling and entropy generation analysis

Authors: Wei-Wei Wang; Yang Cai; Lei Wang; Cheng-Wei Liu; Fu-Yun Zhao; Mikhail A. Sheremet; Di Liu;

A two-phase closed thermosyphon operated with nanofluids for solar energy collectors: Thermodynamic modeling and entropy generation analysis

Abstract

Abstract Two-Phase Closed Thermosyphons (TPCTs) is a high-efficiency heat transfer technology being widely utilized in the fields of built and solar energy exploitations. In present work, a 2-D steady-state model is innovatively proposed to investigate thermal performance and flow dynamics of a single TPCT containing nanofluids. Conservation equations for mass, momentum, and energy were fully solved by the dichotomy algorithm. The effects of input powers, nanoparticles materials (Al2O3, Fe2O3 and Cu), and concentration levels (φ = 0–12 wt%) on the thermodynamics and entropy generation of the thermosyphon were numerically investigated and the results were evaluated through those from the pure water. A substantial change in the liquid film thickness, flow velocity profile, interfacial shear force, local heat transfer coefficient, temperature distribution, entropy generation rate and thermal resistance were subsequently obtained when using a nanofluid. Our numerical results revealed that nanofluids in thermosyphon could effectively enhance thermal performance by decreasing the evaporator temperature, thereby reducing overall entropy generation by about 41%, 32% and 29% for Cu, Fe2O3 and Al2O3 in comparison with pure water, respectively. Additionally, entropy generation significantly decays when nanoparticle concentration levels promote. Numerical results further indicate that the flow resistance of working fluid increases, maximum friction entropy generation increases by approximately 36.37%, 15.15%, and 9.09% for Cu, Fe2O3, Al2O3 of φ = 9 wt%, respectively. Moreover, the existence of an optimum concentration level for nanoparticles in maximizing the heat transfer limit was theoretically achieved for all nanofluids. Current results agreed well with experimental data within average deviation being no more than 10%. In conclusions, results suggest that TPCT-solar collect using nanofluid has a low simple payback period to absorb solar radiation to convert thermal energy compared to the conventional one charged with pure water.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 1%
Top 10%
Top 1%