
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Solar photovoltaic parameter estimation using an improved equilibrium optimizer

handle: 10072/400739
Abstract In this paper, a recent optimization algorithm called Equilibrium Optimizer (EO) is first improved using a linear reduction diversity technique (LRD) and local minima elimination method (MEM). The improved EO (IEO) reduces the diversity of the population until enabling them to get better solutions. This method is centered around improving the particles with the worst fitness values within the population by moving them toward the best-so-far solution as an attempt to increase the convergence toward the near-optimal solution. As a side effect, LRD increases the probability of entrapment into local minima if it could not find a better solution. Therefore, another method known as local minima elimination method (MEM) is used to take the current solution either within the boundaries of two particles selected randomly or within the search boundaries of the problem itself. The extensive comparative experiments demonstrate that the proposed IEO is competitive and often superior compared to recent algorithms. We applied the proposed IEO algorithm to R.T.C France commercial solar cells using a single diode model (SDM), the double diode model (DDM), and three photovoltaic (PV) modules in addition to two commercial ones.
- Torrens University Australia Australia
- Zagazig University Egypt
- Griffith University Australia
- Zagazig University Egypt
- UNSW Sydney Australia
Built environment and design, Engineering, Science & Technology, Energy & Fuels, Parameter estimation, Photovoltaic solar cells
Built environment and design, Engineering, Science & Technology, Energy & Fuels, Parameter estimation, Photovoltaic solar cells
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).116 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
