
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of multiple factors on performance of photovoltaic-thermal modules

Abstract In this paper, an analysis of three-dimensional transient thermal transfer is presented to evaluate the performance of a photovoltaic thermal module with an optimize structural design, incorporating direct use of an aluminum collector as the substrate. The effect of cross-sectional geometries and ratios of size and spacing was considered to optimize the performance of a photovoltaic-thermal (PVT) module. The temperature, velocity and pressure distributions were demonstrated in a steady state model using a finite element method. Simulation results indicated the temperature of the PVT module was increased by the solar irradiation incident with the panel, yet overall decreased by an increased flow velocity. In this study, we examine seven types of media used as the medium to cool the PVT module, where water was preferred, due to its higher specific heat capacity. Further, for multiple interconnected PVT modules, connecting method in parallel and series resulted in pressure drop for the PVT module. In addition, the simulations were compared to experimental data providing validation of the estimated operating temperature in agreement with simulation results, and the outcomes will provide an indication for preferred assembly of PVT modules for application in building integration and future product design.
- Commonwealth Scientific and Industrial Research Organisation Australia
- Beijing University of Technology China (People's Republic of)
- Beijing University of Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
