Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of 2D perovskite layer and multivalent defect on the performance of 3D/2D bilayered perovskite solar cells through computational simulation studies

Authors: Sangeeta Singh; Mustafa K. A. Mohammed; Anjan Kumar; Anjan Kumar; Ahmed Esmail Shalan;

Effect of 2D perovskite layer and multivalent defect on the performance of 3D/2D bilayered perovskite solar cells through computational simulation studies

Abstract

Abstract Three-dimensional (3D) metal halide perovskite solar cells (PSCs) have a power conversion efficiency that is now comparable with conventional silicon solar cells. For PSC applications to succeed in the market, long-term reliability under open-air conditions is essential. Recent experiments have shown that two-dimensional (2D) perovskites seem to exhibit good stability due to the presence of hydrophobic organic spacers, but 2D PSCs are incapable of generating and transporting a large amount of charge due to their extended optical bandgaps. Mixed dimensional perovskites with dimension lies between 2D and 3D recently became a promising candidate to sustain long-term stability and high performances concurrently to address this obstacle. The current research article presents the finding of simulation-based studies performed on novel device architecture consisting of ITO/Nb-Ti2O3/3D Perovskite/2D Perovskite/Spiro-OMeTAD/Au. Using optical simulation features of SCAPS, absorption of light is computed in the proposed device. The computational results show that the thickness of the 2D perovskite layer badly affects the solar cell parameters. A thin 2D perovskite behaves as a capped coating that avoids the deterioration of 3D perovskite in open-air environments. The effect of a multivalent defect in the 3D perovskite layer is mathematically modelled, and their impact on overall performance parameters are analyzed. The findings are compared to the same configuration results, except where the absorber layer’s multivalent defect has been substituted by a neutral defect of the same defect density of about (1011 cm−3). Results show that the multivalent defect leads to an underestimation of the efficiency by 4.2%.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 1%
Top 10%
Top 1%