Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermo-mechanical study of a novel rotating disk volumetric receiver

Authors: X. Rández; F. Zaversky; D. Astrain; M.A. Garrido-Maneiro; S. Tortuero; A. Rico; P. Poza;

Thermo-mechanical study of a novel rotating disk volumetric receiver

Abstract

Abstract This study evaluates the mechanical behaviour of a ceramic disk which makes up an innovative volumetric absorber design. The new receiver design is formed by a group of disks which are rotating inside a cavity, distributing the radiation absorbed in the aperture to the whole cavity. This research studies the stress fields due to thermal gradients and its effect in the crack propagation in the disks. The complete analysis has been carried out in three steps: the mechanical characterization of the material, in order to know its fracture properties, the computational fluid dynamics (CFD) analysis of the disk, in order to know the temperature distribution in the disk and the finite element model (FEM), which uses as inputs the results of the two previous steps and solves the stress fields in the disk and the fracture behaviour. Fracture and crack growing in the disk have been modelled by using a cohesive element, which, from the fracture properties of the material, allows simulating the crack growing in the disk. This investigation, by means of stress fields and crack propagation analysis, demonstrates the mechanical viability of the disks concept.

Powered by OpenAIRE graph
Found an issue? Give us feedback