Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hexyl dithiafulvalene (HDT) substituted bipyridine ancillary ligands for panchromatic sensitization

Authors: Derangula Venkateswarlu; Venkata Surya Kumar Choutipalli; Venkatesan Subramanian; T. Swetha; T. Swetha; Surya Prakash Singh; Surya Prakash Singh;

Hexyl dithiafulvalene (HDT) substituted bipyridine ancillary ligands for panchromatic sensitization

Abstract

Abstract The device performance of the dye-sensitized solar cells (DSSCs) mainly depends on the sensitizers. Ruthenium sensitizers have played a vital role in the DSSCs to improve power conversion efficiency. However, the absorbance spectra of most Ru-sensitizers limited up to 600 nm, which maybe prohibiting further improvement of short-circuit current density (Jsc). To address this problem, TER-HDT was designed and synthesized by incorporating hexyl dithiafulvalene (HDT)-substituted bipyridine as an ancillary ligand and [2,2′:6′,2′'-terpyridine]-4,4′,4′'-tricarboxylic acid as anchoring ligand together. The synthesized TER-HDT was systematically studied and characterized by spectroscopic (proton NMR, Mass analysis), optical (UV-absorbance and photoluminescence), electrochemical and theoretical techniques. The novel sensitizer TER-HDT absorption tailed up to 900 nm, which originated from the enhanced intermolecular charge transfer in conjunction with efficient intra and intermolecular interactions. The HOMO and LUMO energy levels TER-HDT are suitable for electron injection and regeneration which may help to achieve high efficiency.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Energy Research