Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UCL Discoveryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2022
Data sources: UCL Discovery
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy, exergy, economic and environmental assessment of the triangular solar collector assisted heat pump

Authors: Jiang, Yan; Zhang, Huan; Zhao, Rui; Wang, Yaran; Liu, Minzhang; You, Shijun; Wu, Zhangxiang; +2 Authors

Energy, exergy, economic and environmental assessment of the triangular solar collector assisted heat pump

Abstract

The solar air collector assisted air source heat pump is demonstrated to be an efficient clean heating technology, while the research on its working modes, and the corresponding energy, exergy, economic, environmental (4E) analysis is insufficient. In this study, a novel triangular solar air collector assisted air source heat pump (TSAHP) for building heating is proposed, and three working modes including preheating, series and parallel modes are illustrated. The energy model is established and used to determine the optimal working mode, and solved by Python environment. Four scenarios including TSAHP with three areas of triangular solar air collector (TSAC) and conventional air source heat pump (ASHP) are compared based on the optimal working mode. Thermodynamic performance of the four scenarios under different working conditions is analyzed, and result indicate that the TSAHP with 3 m2 TSAC can reduce the power consumption and exergy destruction of ASHP components by 321.9 kWh and 784.6 MJ respectively during the whole heating period. Economic evaluation shows that TSAHP has the shortest payback period with moderate TSAC area, and has economic advantages at low nominal interest rate and high electric power cost with large TSAC area. In addition, based on the whole life cycle, 1 m2 of TSAC can reduce CO2 emission by more than 4500 kg.

Country
United Kingdom
Related Organizations
Keywords

690, Thermodynamic performance, Solar assisted heat pump, Heat transfer model, Economic evaluation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green