Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancing heliostat calibration on low data by fusing robotic rigid body kinematics with neural networks

Authors: Max Pargmann; Moritz Leibauer; Vincent Nettelroth; Daniel Maldonado Quinto; Robert Pitz-Paal;

Enhancing heliostat calibration on low data by fusing robotic rigid body kinematics with neural networks

Abstract

Abstract Solar tower power plants rely on precise calibrations of their heliostats for efficient operation. Open-loop calibration procedures are the most common type due to their cost-effectiveness. Two main approaches to these algorithms exist: geometry-based robotic kinematics and neural network-based models. While the former is reliable and requires little data, it only yields moderate accuracy. The latter, however, promises higher accuracies but is data-hungry and unreliable. In this study, we propose a 2-layer coarse-to-fine hybrid model that combines the strengths of both approaches. Our model uses a rigid-body model for prealignment, then phases in a neural network disturbance model through a regularization sweep. This approach ensures that the prediction accuracy is, in the worst-case, equivalent to that of the rigid-body model. Moreover, it helps to identify deficiencies that may have been overlooked by the physical approach. It especially is capable to compute deviation from the geometry models averaged optimum. For testing, we used real measurement data from daily heliostat calibration at the solar tower in Jülich. We also employed a training/validation data split for evaluation, which allows for a conservative performance assumption over the entire year. Our results demonstrate that the hybrid-model outperforms rigid-body models starting from the first measurement, achieving a top performance below 0.7 milliradians. In conclusion, our proposed hybrid model provides a cost effective in-situ solution for heliostat calibration with highest accuracies on low data in solar tower power plants for all open loop calibration methods.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%