
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluation of the WRF-solar model for 72-hour ahead forecasts of global horizontal irradiance in West Africa: A case study for Ghana

Accurate global horizontal irradiance (GHI) forecasting is critical for integrating solar energy into the power grid and operating solar power plants. The Weather Research and Forecasting model with its solar radiation extension (WRF-Solar) has been used to forecast solar irradiance in different regions around the world. However, the application of the WRF-Solar model to the prediction of GHI in West Africa, particularly Ghana, has not yet been investigated. The aim of this study is to evaluate the performance of the WRF-Solar model for predicting GHI in Ghana, focusing on three automatic weather stations (Akwatia, Kumasi and Kologo) for the year 2021. We used two one-way nested domains (D1 = 15 km and D2 = 3 km) to investigate the ability of the fully coupled WRF-Solar model to forecast GHI up to 72-hour ahead under different atmospheric conditions. The initial and lateral boundary conditions were taken from the ECMWF high-resolution operational forecasts. Our findings reveal that the WRF-Solar model performs better under clear skies than cloudy skies. Under clear skies, Kologo performed best in predicting 72-hour GHI, with a first day nRMSE of 9.62 %. However, forecasting GHI under cloudy skies at all three sites had significant uncertainties. Additionally, WRF-Solar model is able to reproduce the observed GHI diurnal cycle under high AOD conditions in most of the selected days. This study enhances the understanding of the WRF-Solar model’s capabilities and limitations for GHI forecasting in West Africa, particularly in Ghana. The findings provide valuable information for stakeholders involved in solar energy generation and grid integration towards optimized management in the region.
info:eu-repo/classification/ddc/550, 550, ddc:550, Global horizontal irradiance, ddc:551, 551, ddc:910, Ghana, WRF-Solar, Earth sciences, West Africa, Forecasting
info:eu-repo/classification/ddc/550, 550, ddc:550, Global horizontal irradiance, ddc:551, 551, ddc:910, Ghana, WRF-Solar, Earth sciences, West Africa, Forecasting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
