
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>A methodology for realistic estimation of the aerosol impact on the solar potential
The atmospheric aerosol loading may significantly influence the performance in solar power production. The impact can be very different both in space (even in short distance) and time (shortterm fluctuations as well as long-term trend). Aiming to ensure a high degree of generality, this study is focused on the aerosol impact on the collectable solar energy. Thus, the results are independent of solar plants characteristics. A new methodology for estimating the average daily,monthly, and yearly losses in the solar potential due to aerosols is proposed. For highlighting the loss in the overall solar potential, a new ideal scenario is defined as a reference for the atmospheric aerosol background. A new equation for computing the solar potential loss is proposed to adjust for possible biases. In a departure from similar studies, the analysis relies on ground measurements (BSRN and AERONET), always more accurate than remotely sensed satellite data. The seldom discussed impact of aerosol type is considered. As a general conclusion, the monthly and yearly reductions of the solar potential due to aerosols are estimated at 12 locations spread around the globe, amounting to losses of the solar potential ranging from 0.6% to as high as 7.2%.
- West University of Timişoara Romania
- Polytechnic University of Timişoara Romania
Physics - Atmospheric and Oceanic Physics, Atmospheric and Oceanic Physics (physics.ao-ph), FOS: Physical sciences
Physics - Atmospheric and Oceanic Physics, Atmospheric and Oceanic Physics (physics.ao-ph), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
