Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells

Authors: T. Repmann; B. Zwaygardt; R. Drese; Oliver Kluth; Bernd Rech; Matthias Wuttig; Jürgen Hüpkes; +1 Authors

Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells

Abstract

Abstract Highly conductive and transparent aluminum-doped zinc oxide (ZnO:Al) films were prepared by reactive mid-frequency (MF) magnetron sputtering at high growth rates. By varying the deposition pressure, pronounced differences with respect to film structure and wet chemical etching behavior were obtained. Optimized films develop good light-scattering properties upon etching leading to high efficiencies when applied to amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon-based thin-film solar cells and modules. Initial efficiencies of 7.5% for a μc-Si:H single junction and 9.7% for an a-Si:H/μc-Si:H tandem module were achieved on an aperture area of 64 cm 2 .

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 10%
Top 1%
Top 10%
Related to Research communities
SDSN Greece