Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recent developments in rear-surface passivation at Fraunhofer ISE

Authors: Hofmann, Marc; Janz, Stefan; Schmidt, Christian; Kambor, Stephan; Suwito, Dominik; Kohn, Norbert; Rentsch, Jochen; +2 Authors

Recent developments in rear-surface passivation at Fraunhofer ISE

Abstract

Abstract Fraunhofer ISE has a long experience in the field of surface passivation for crystalline silicon wafers. Novel rear-surface passivation layer systems have led to excellent results. Using a low-temperature passivation stack of hydrogenated amorphous silicon and plasma-enhanced chemical vapor deposition (PECVD) silicon oxide an efficiency of up to 21.7% has been achieved. Thermally stable passivation can be proven with all-PECVD stacks of silicon oxide, silicon nitride, and silicon oxide (PECVD-ONO), i.e. after contact firing. Solar cell efficiencies of up to 20.0% have been reached with PECVD-ONO. In parallel, Fraunhofer ISE is working on silicon carbide (SiC x ) layers, which provide excellent and thermally stable passivation, as well deposited by PECVD. Solar cells with SiC x layers as rear passivation led to efficiencies of up to 20.2%.

Country
Germany
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research