Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of absorber composition and nanocrystalline phases in CuInS2 based photovoltaic technologies by ex-situ/in-situ resonant Raman scattering measurements

Authors: Joan Ramon Morante; Joan Ramon Morante; Alejandro Pérez-Rodríguez; Alejandro Pérez-Rodríguez; Alexey Shavel; S. Jaime-Ferrer; Edgardo Saucedo; +5 Authors

Assessment of absorber composition and nanocrystalline phases in CuInS2 based photovoltaic technologies by ex-situ/in-situ resonant Raman scattering measurements

Abstract

Abstract This work describes the use of quasi-resonant Raman scattering measurements for the assessment of chemical composition and nanocrystalline phases in CuInS2 based photovoltaic technologies. Raman spectra measured in S-rich CuIn(S,Se)2 layers at a fixed wavelength of 785 nm show a strong increase in the intensity of the peaks that are related to the quasi-resonant excitation of the corresponding vibrational modes. The spectra measured at these conditions are characterised by the presence of seven bands that have been identified with four first order peaks in the 200–400 cm−1 spectral region and three second order peaks in the 550–750 cm−1 spectral region. These spectra are strongly sensitive to changes in the composition of S-rich CuIn(Se,S)2 alloys. On the other hand, the strong increase in the intensity of the peaks allows the development of in-situ measurements for real time process monitoring. As an example of this application, Raman spectra have been measured at real time conditions during the growth of colloidal CuInS2 nanocrystals that are being developed for the fabrication of low cost solar cells. The data obtained corroborate the potential of quasi-resonant Raman scattering measurements for the development of ex-situ and in-situ quality control and process monitoring tools in thin film chalcopyrite photovoltaic technologies.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research