Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Three novel ways of making thin-film crystalline-silicon layers on glass for solar cell applications

Authors: Jan Vaes; Valerie Depauw; Yu Qiu; Frederic Dross; Ivan Gordon; D. Van Gestel; Jef Poortmans; +1 Authors

Three novel ways of making thin-film crystalline-silicon layers on glass for solar cell applications

Abstract

Abstract Monolithic solar modules made from thin-film crystalline-silicon layers of high quality on glass substrates could lower the price of photovoltaic electricity substantially. This paper describes three different approaches that we are currently investigating to address the challenge to form high-quality crystalline-silicon layers on glass substrates. The SLiM-Cut approach is a wafering technique that results in 50-micron thick layers with a minimum of material loss. We show that crack initiation can be used as a means to better control the lift-off process. The epifree approach involves the lift-off of ultra-thin monocrystalline films formed by reorganization of cylindrical macropore arrays in silicon upon annealing. So far, films with a thickness of around 1 μm and very simple cells with an efficiency of up to 4.1% have been achieved. Finally, a seed layer approach is presented based on the epitaxial thickening by thermal CVD of monocrystalline silicon layers bonded on glass-ceramic substrates. Very promising cell efficiencies of 11% and Voc values of up to 610 mV have been achieved using a very simple and non-optimized cell structure.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
  • 2
    views
    Data sourceViewsDownloads
    OpenAIRE20
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
49
Top 10%
Top 10%
Top 10%
2
bronze