
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Gravure printed flexible organic photovoltaic modules

In this letter, organic solar cell modules based on poly-3-hexylthiophene (P3HT) and [6.6]-phenyl-C61-butyric acid methyl ester (PCBM) blend films with a module active area of 15.45 cm² prepared by roll-to-roll (R2R) compatible gravure printing method are demonstrated. The gravure printed organic photovoltaic modules consist of eight serially connected solar cells in same substrate. Indium-tin-oxide (ITO) is patterned by screen printable etching paste. Hole injection layer and active layer are prepared by gravure printing method. All processing steps excluding cathode evaporation are performed in air. Electrical measurements are done to modules consisting of 5–8 serially connected solar cells. The photovoltaic modules comprising 5, 7 and 8 serially connected cells exhibit an active area power conversion efficiency of 1.92%, 1.79% and 1.68%, respectively (Oriel Sol3A Class AAA, AM1.5G, 100 mW cm−2).
- Oulu University Hospital Finland
- VTT Technical Research Centre of Finland Finland
- University of Oulu Finland
- VTT Technical Research Centre of Finland Finland
- Katholieke Universiteit Leuven Belgium
Solution processing, Gravure printing, Organic photovoltaics, Polymer solar cell, Module fabrication, SDG 7 - Affordable and Clean Energy
Solution processing, Gravure printing, Organic photovoltaics, Polymer solar cell, Module fabrication, SDG 7 - Affordable and Clean Energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).132 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
