Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance

Authors: Stefan Langner; orcid Christoph J. Brabec;
Christoph J. Brabec
ORCID
Harvested from ORCID Public Data File

Christoph J. Brabec in OpenAIRE
Florian Machui; Xiangdong Zhu; orcid Steven Abbott;
Steven Abbott
ORCID
Harvested from ORCID Public Data File

Steven Abbott in OpenAIRE

Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance

Abstract

We discuss an alternative route to determine the solubility parameters of two prototype organic semiconductors, namely the semi-crystalline polymer poly-(3-hexylthiophene-2,5-diyl) (P3HT) and the methano-fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The HSP (Hansen solubility Parameters) derived by this novel method are compared to the findings derived from the classical multi-solvent method to determine the HSP, and significantly higher accuracy is found. For this novel approach we designed two component solvent blend systems, being composed by mixing a solvent with a non-solvent. Varying the composition of the solvent – non-solvent blends from 0% to 100% gradually converts a solvent into a non-solvent. This very accurate control of the dispersive, polar and hydrogen contributions to the overall solubility now allows determining the Hansen sphere for P3HT and PCBM with much higher accuracy. The transition from a solvent into a non-solvent was further followed by solar cell investigations. Comparing the solubility studies with device investigations allows identifying the processing limits of solvent systems.

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
235
Top 1%
Top 10%
Top 1%
bronze
Related to Research communities
Energy Research
Upload OA version
Are you the author? Do you have the OA version of this publication?