

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Graded vertical phase separation of donor/acceptor species for polymer solar cells

handle: 20.500.14243/233860 , 11587/368495
The donor/acceptor inter-mixing in bulk heterojunction (BHJ) solar cells is a critical parameter, often leading to irreproducible performance of the finished device. An alternative solution-processed device fabrication strategy towards a better control of the micro/nano-structured morphology consists of a sequential coating of the donor (e.g., poly-(3-hexylthiophene), P3HT) and the acceptor (e.g., [6,6]-phenyl-C61-butyric acid methyl ester, PCBM) from orthogonal solvents. We demonstrate that, in spite of the solvent orthogonality, this technique does not lead to a well-defined bilayer with a sharp interface, but it rather results in a graded vertical phase-separated junction, resulting from the diffusion of the PCBM in the P3HT bottom layer. We are able to control the diffusion of PCBM, which occurs preferentially in the amorphous P3HT domains, by easily varying the ratio between crystalline/amorphous domains in the P3HT. Such a ratio can be simply modified by changing the solvent for P3HT. We show that the donor–acceptor diffused bilayer (DB) junction is an intermediate structure which combines both advantages of the well-defined bilayer and conventional BHJ configurations. Indeed, the DB device geometry ensures the good reproducibility and charge percolation, like the well-defined bilayer, while preserving the interpenetration of the donor and acceptor species, resulting in an efficient charge separation, characteristic of the BHJ. Overall the annealed DB device geometry can be assimilated to a graded BHJ with an improved reproducibility and mean power conversion efficiency (PCE) of 3.45%, higher than that of the standard BHJ devices of 3.07%. Furthermore, we demonstrate the highest performance for the as-cast DB device with a PCE of 2.58%. It is worthy to note that our DB device exhibits improved open circuit voltage, fill factor, series and shunt resistances, which denote that the vertically phase separated DB junction ensures improved charge percolation.
INTERNAL QUANTUM EFFICIENCY; THIN-FILMS; MORPHOLOGY EVOLUTION; POLY(3-HEXYLTHIOPHENE); PERFORMANCE; COMPOSITES, 500, 540 Chimica e scienze connesse
INTERNAL QUANTUM EFFICIENCY; THIN-FILMS; MORPHOLOGY EVOLUTION; POLY(3-HEXYLTHIOPHENE); PERFORMANCE; COMPOSITES, 500, 540 Chimica e scienze connesse
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 2 download downloads 8 - 2views8downloads
Data source Views Downloads ZENODO 2 8


