Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improved light scattering and surface plasmon tuning in amorphous silicon solar cells by double-walled carbon nanotubes

Authors: Chieh Hung Yang; Jr-Hau He; Wei Chen Tu; Chia Tze Huang; Hsin-Ping Wang; Si-Chen Lee; Y. T. Chang;

Improved light scattering and surface plasmon tuning in amorphous silicon solar cells by double-walled carbon nanotubes

Abstract

Abstract Surface plasmon resonance was observed to red shift in hexagonal nanohemisphere Ag array covered by double-walled carbon nanotubes. By altering the density of carbon nanotubes, the surface plasmon resonance can be tuned from 563 nm to 586 nm and the light scattering is enhanced in the spectral range from orange to red. This leads to improved performance of amorphous silicon solar cells deposited on top, which yields a short-circuit current density of 14.07 mA/cm2 and a power conversion efficiency of 6.55% under the illumination of AM 1.5G. This carbon nanotubes' density-dependent surface plasmon shift is attributed to the dielectric constant change around the periodic Ag nanostructure, which can be applied to other solar cell materials by fine-tuning the surface plasmon resonance to enhance the absorption at wavelength where the active layer is less absorptive.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%
bronze