Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energy Materia...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

UV-nanoimprint lithography and large area roll-to-roll texturization with hyperbranched polymer nanocomposites for light-trapping applications

Authors: González Lazo, Marina; Teuscher, Rémy; Leterrier, Yves; Månson, Jan-Anders E.; Calderone, Caroline; Hessler-Wyser, Aïcha; Couty, Philippe; +2 Authors

UV-nanoimprint lithography and large area roll-to-roll texturization with hyperbranched polymer nanocomposites for light-trapping applications

Abstract

Light-trapping textures were produced in hyperbranched polymer (HBP) silica nanocomposites using a UV-nanoimprint lithography (UVNIL) replication method, either in batch or roll-to-roll processes. The hardness of the HBP was found to increase by a factor of 2.5 with the addition of 50 vol% of nanoparticles. A nickel master with random sub-micron pyramidal structures was used to imprint nanocomposites containing up to 20 vol% of silica on a polyethylene naphthalate (PEN) substrate. The influence of nanoparticle fraction and pressure on the texture morphology and light scattering properties of the replicas was studied using scanning electron microscopy and optical analysis. The roughness and coherence length of the textures were similar to those of the master for all investigated compositions and process pressures. Likewise, the light scattering performance of aluminum-coated texturized nanocomposites was identical to that of the metal template, with a haze of 90% over the 400-800 nm spectral range. Thin film amorphous silicon solar cells were deposited on the texturized substrates using a large-area roll-to-roll process. The photocurrent of these devices was found to be 23% higher than the reference value of a flat cell.

Country
Switzerland
Keywords

Hyperbranched polymer Nanocomposite UV nanoimprint lithography Light-trapping Roll-to-roll Amorphous silicon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Energy Research