
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal ageing of bulk heterojunction polymer solar cells investigated by electric noise analysis

handle: 20.500.14243/270349 , 11386/4256253
Abstract Temperature is one of the most specific external parameters that can accelerate the degradation rate in polymer:fullerene solar cells. To detect modifications of the active layer materials, electric noise spectroscopy is a sensitive experimental technique. A detailed characterization of the dc electric transport and voltage–noise properties shows how thermal ageing is detrimental for the investigated bulk heterojunction photovoltaic system. In particular, an increase of the energy barrier height at the interface between the metal contact and the blend, and a simultaneous decrease of the charge carrier zero-field mobility, evaluated through the analysis of the flicker noise component, are observed as a consequence of a thermal treatment. These effects can be related to morphological changes of the solar cell active layer and interface, and are revealed by monitoring the noise level.
- National Research Council Italy
- Università degli studi di Salerno Italy
- University of Hagen Germany
- University of Hagen Germany
- Carl von Ossietzky University of Oldenburg Germany
Bulk heterojunction solar cells; Organic photovoltaics; Electric noise processes, Organic photovoltaics, Bulk heterojunction solar cells, Electric noise processes
Bulk heterojunction solar cells; Organic photovoltaics; Electric noise processes, Organic photovoltaics, Bulk heterojunction solar cells, Electric noise processes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
