Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flexible polymer/copper indium sulfide hybrid solar cells and modules based on the metal xanthate route and low temperature annealing

Authors: Ilse Letofsky-Papst; Gregor Trimmel; Birgit Kunert; Robert Saf; Christopher Fradler; Ferdinand Hofer; Roland Resel; +2 Authors

Flexible polymer/copper indium sulfide hybrid solar cells and modules based on the metal xanthate route and low temperature annealing

Abstract

Abstract Organic/inorganic hybrid solar cells are an interesting type of polymer based solar cells, which combine beneficial properties of inorganic semiconductors with them of polymer based materials, in particular, the easy processability on flexible plastic substrates. Herein, we present a method to prepare polymer/copper indium sulfide hybrid solar cells on flexible PET substrates via the metal xanthate route for the in situ preparation of ligand-free inorganic nanocrystals directly in the conjugated polymer matrix. The issue that the temperatures needed for the formation of the inorganic nanoparticles were too high to apply this preparation route on flexible substrates, was solved in this study by adding n-hexylamine to the precursor solution which facilitates the formation of higher crystalline nanoparticles at lower temperatures. n-Hexylamine thereby reacts with the xanthate forming the corresponding O-2,2-dimethylpentan-3-yl-N-hexylthiocarbamate. Following this modified route, flexible hybrid solar cells with power conversion efficiencies of 1.6% could be realized using temperatures not higher than 140 °C in the whole fabrication process. Furthermore, we demonstrate that the metal xanthate route is also well suited for the fabrication of larger area solar cells and present hybrid solar cell modules on glass as well as on flexible PET substrates. In addition, the lifetime of the prepared solar cells was investigated. The devices prepared at low temperature exhibited significantly improved stability compared to devices fabricated at 195 °C.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research