
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Efficiency enhancement of i-PERC solar cells by implementation of a laser doped selective emitter

Efficiency enhancement of i-PERC solar cells by implementation of a laser doped selective emitter
Abstract In this work, we present the incorporation of a laser doped selective emitter into the i-PERC platform at Imec using large area magnetically confined boron-doped Czochralski grown silicon wafers. Cells were fabricated with self-aligned plated n-type contacts with a comparison between the use of a homogenous emitter with contact openings formed by picosecond laser ablation and a selective emitter formed by laser doping with a mode-locked UV laser using various processing speeds. Without modification to other processes in the i-PERC platform, improvements in efficiency of approximately 0.4% absolute were obtained with the inclusion of the selective emitter structure through improvements in open circuit voltage, fill factor and reduced series resistance. This resulted in peak efficiencies of 20.5% using a processing speed for laser doping of 5 m/s.
- Katholieke Universiteit Leuven Belgium
- KU Leuven Belgium
- UNSW Sydney Australia
4 Research products, page 1 of 1
- 2015IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
